
Failure prediction: what to do with unpredicted
failures?

Mohamed Slim Bouguerra*, Ana Gainaru* and Franck Cappello*
*INRIA UIUC and ANL Joint Laboratory for Petascale Computing

Abstract-As large parallel systems increase in size and
complexity, failures are inevitable and exhibit complex space
and time dynamics. Several key results have demonstrated that
recent advances in event log analysis can provide precise failure
prediction. The state of the art in failure prediction provides a
ratio of correctly identified failures to the number of all predicted
failures of over 90% and able to discover around 50% of all
failures in a system. However, large parts of failures are not
predicted and are considered as false negative alerts. Therefore,
developing efficient fault tolerance strategies to tolerate failures
requires a good perception and understanding of failure predic­
tion characteristics. To understand the properties of false negative
alerts, we conducted a statistical analysis of the probability
distribution of such alerts and their impact on fault tolerance
techniques. specifically we studied failures logs from different
HPC production systems. We show that (i) the false negative
distribution has the same nature as the failure distribution (ii)
After adding failure prediction, we were able to infer statistical
models that describe the inter-arrival time between false negative
alerts and hence current fault tolerance can be applied to these
systems. Moreover, we show that the current failures traces have
a high correlation between the failure inter-arrival time that can
be used to improve the failure prediction mechanism. Another
important result is that checkpoint intervals can still be computed
from an existing first-order formula.

I. INTRODUCTION AND BACKGROUND

The development and improvement of fault-tolerance
mechanisms need realistic models in order to handle the
failure occurrences in large-scale distributed systems. Tradi­
tional models have investigated failures in high performance
computing systems (HPC) at much smaller scale, and of­
ten under the assumption of independence between failures.
However, more recent studies have shown evidence that time
patterns, correlations, and other time-varying behavior exist in
the occurrence of failures.

With the introduction of failure prediction, a new direction
of study has been opened. A complement to the classic preven­
tive checkpoint-restart approach is failure avoidance, by which
the occurrence of a fault is predicted and proactive measures
are taken. This approach requires a reliable prediction system
to anticipate failures and their corresponding locations. In
general, two types of predictions are possible for HPC systems:
(1) state prediction, where algorithms estimate the state of
each node, and (2) failure prediction, where algorithms provide
information about when and where failures will occur in the
near future. The first type uses the states to decide whether a
job can be scheduled on a specified node [30] . In this paper we
use the second type. Specifically, we apply the ELSA tool [11]
on historic logs generated by different HPC systems in order to
record the predictions and conduct whetherstatistical analysis.

Before starting the analysis, we define some parameters
and notations concerning failure prediction. A true positive
alert is represented by a correct prediction that ends up with
an actual failure in the system. False negative alerts represent
actual failures that were not predicted by our method. False
positives are predicted failures that did not actually happen in
the system. Precision can be seen as a measure of fidelity;
it represents the proportion of correct found anomalies to all
identified anomalies. Mathematically the precision is given
b # 'true po.~it'iv... R II' d h

Y #t1'l.e posiHve+#!o.lse positive ' eca IS compute as t e
ratio of correct identifications to all the existing failures in
the log ritresenting a measure of completeness; it is given by

true posttw e
#true positive+#jalse n egative'

Failure prediction techniques are based on the observation
that an error propagation chain exists between the initial fault
in the system and its corresponding events [27]. ELSA's
approach assumes that faults generate a number of errors
that could be observable at the system level, represented
by notifications in the log files . The model used by ELSA
improves other prediction techniques by considering the fact
that different failures have different distributions and create
different symptoms in the system. Current state-of-the-art
approaches in failure prediction for HPC systems are based
on data-mining algorithms and do not distinguish between the
behavior of different failures . ELSA was shown to overcome
the limitations of these approaches and was successfully ap­
plied on different systems, predicting approximately 45% of
failures with a precision of 95%.

To benefit from failure prediction, we have to deal with
several new challenges. One of the challenges is how to handle
the 55% of the failures that are not visible by the prediction
module. Also, false positives pose additional overheads on
fault tolerance techniques. Thus, discovering and modeling
the arrival of the unpredicted failures and true positive alerts
influence the choice of the optimal fault tolerance strategy.
Important objective addressed in this work is to compute the
new checkpoint interval dedicated to the 55% of the failures.
To this end, we first analyze the original distribution of failure
arrival times and we use it to model the distribution of the
unpredicted failure . Both distributions are used to describe the
fundamental parameters that influence the tradeoff between
the overhead due to fault tolerance actions and the amount
of lost work due to failures in the presence of a prediction
module. We show that a direct use case of this model is
to compute the checkpoint interval dedicated to unpredicted
failures. This study were conducted on a variety of systems
recently in production at two US national laboratories. The
results show that failure prediction mechanisms are able to
detect the nonrandomness and correlation.

The rest of this paper is organized as follows. In Section II
we review current related work and highlight our contributions.
Section III presents the data we analyze throughout the rest
of the paper. In Section IV we introduce the prediction
method and its results on the proposed datasets. In Section
V we develop our mathematical model for predicted and
non predicted failure inter-arrival time. In Section VI, we
present the experimental and simulation-based evaluations of
our analytical model. We conclude this paper in Section VII
with a brief summary and look at future work.

II. RELATED WORK

The work proposed in this paper differs from the existing
work in two ways: what is measured and point is what is
modeled. In terms of measurements, we consider the interval
of time between false negative alerts versus the interval of time
between failures.

Previous studies [29), [14), [15) focused on characterizing
failures in several different distributed systems. Both [28)
and [13) analyzed different HPC systems and found that
Weibull distribution provides a good fit for the failure char­
acteristic. The work in [34) has the same conclusion but also
reveals the impact of filtering the failures that do not affect jobs
on the distribution parameters and numerical characteristics.
An example of an observation made in the paper is the way the
probability of job interruption is related with existing historical
records of application-related interruptions. The relationship
between workload and failure rate in large-scale systems was
also studied in [26) with similar conclusions.

The impact of failures and checkpointing protocols on
application efficiency are studied in [18). The authors analyze
Blue GenelL logs for six months by using temporal filtering
and then by studying the job interruptions through simulation.
A study that uses real job logs is presented in [34], where the
analysis focuses on the impact of failures on the jobs in the
whole system and not on specific failures . In [17], the authors
do a similar study but with the focus on characteristics of
troubleshooting from large-scale storage systems.

Most of these studies assume that failures occur indepen­
dently, or they disregard the correlation of the time interval
between failures. In this work we show that time-correlated
failures have significant implications for proactive fault toler­
ance strategies.

Concerning the second point, we model in our work the
distribution of the unpredicted failures versus the study done
by related work by analyzing all failure occurrences.

A number of failure prediction methods, are presented in
the literature. In [6], the authors introduce the concept of
dynamic metalearning, where the prediction engine switches
between different methods depending on different rules. A
similar but less complex method can be seen in [9), where
the authors extract rules for a fixed time window and generate
association rules between fatal and non fatal events. Another
approach for analyzing the logs is given in [7), where usage
and failure logs are investigated by extracting past and future
failure distributions for each failure instance. Based on these
features , different decision tree classifiers are used in order to
predict failures within a fixed time window.

In [25], the authors present middleware between the ap­
plication and different analysis modules. One of the possi­
ble usages for their system is to facilitate proactive fault
tolerance mechanisms such as preemptive job migration for
fault predictors and other decision-making engines that rely
on distributed failure information. However, they offer the
middleware without having any of the system implemented. In
our previous work [I], we implemented a hybrid fault tolerance
protocol by combining preventive and proactive checkpointing
strategies and modeled the impact of such a protocol on
future exascale systems. The distributions of failures detected
by a prediction system and of non detected failures greatly
influence the overhead that fault tolerance techniques put on
HPC applications [1).

In this paper, we focus on modeling the failures in the
presence of a prediction model. To the best of our knowledge,
all the existing studies focus on modeling all failures that occur
in a system or failures that affect job executions and do not
deal with how prediction changes their characteristics.

III. DATA

The proposed analysis is based on event logs taken from
different HPC. We analyzed 22 high-performance computing
systems that have been in production use at Los Alamos
National Laboratory (LANL) and a Blue GenelL machine from
Lawrence Livermore National Laboratories (LLNL). Traces
represent different periods of time of production of high per­
formance computing system logs. Table I reports the number
of nodes, time intervals, and number of events that each
trace contains. The BlueGenelL has 128K PowerPC 440 700
MHz processors, which are organized into 128 midplanes.
A midplane is the granularity of job allocation. A midplane
contains 16 node cards that represent the compute nodes, 4 I/O
cards, and 24 midplane switches. Events are logged through the
Machine Monitoring and Control System (CMCS) and stored
in a DB2 database engine. The granularity of the Reliability
Availability and Serviceability reporting system (RAS) is less
than I second. Traces for systems at LANL represent events
generated by a set of diverse systems. Systems vary widely
in size, with different numbers of nodes ranging from 1 to
1,024 and different numbers of processors per node ranging
from 4 to 6,152. The hardware architecture used by each
system presents a large variety of different processor types
and memory models. The system we are focusing on in our
study, system 20, consists of256 nodes and Ik processors, each
with 16 GB of memory. We chose these systems because they
have been analyzed in many papers and have been accepted
as representative of HPC production systems. Most workloads
for all systems are large-scale, long-running 3D scientific
simulations. The main characteristic of these applications is
the interleaving of hour long periods of CPU computation with
minute periods of I/O for checkpointing and with periods of
scientific visualization.

A. Failure identification

A preliminary step before focusing on the prediction
method is to analyze the failures of each system. All traces
offer information about events generated in the syslog for each
system without specifically identifying the failures.

TABLE I. INFORMATION A BOUT SYSTEM TRACES

System Time Interval MTIJF (h) Number of Events
Blue GenelL June 2U05 - January 2U05 24.4 4,747,963

LANL systems December 1996 - November 2005 From 13 to 125 43 3,490 per system

The 22 systems that were in production at LANL com­
plement the system logs with manually annotated failure logs,
System administrators at LANL registered the time for every
failure in the systems and gave a brief explanation for all. By
correlating the failures in this annotated log and the events in
the syslog, we were able to decide which event represents a
failure,

Blue GenelL system (BGIL) offers only syslog traces and
no information about failures except the severity. We use the
filtering methods and anomaly detection techniques described
in [10] to isolate events that have the potential of being failures
after which we manually investigate all event types. Each
failure event in our study does not necessarily correspond to
a unique physical failure in the system hardware or software.
Some of our reported failures, especially different types of
failures that are reported in proximity to each other, may
represent the same failure encountered by subsequent jobs.
However, severity field can be misleading in many cases. For
example in [31], while analyzing the Blue GenelL system,
the authors found that the severity field of the log messages
performed poorly as an alert indicator and that after incorpo­
rating this metric into the failure detection algorithm the result
would produce a false positive rate of 59%. The problem arises
because of the lack of information about the exact duration of
each failure. It is an extensive and difficult process to pinpoint
the real root cause of each failure event or its actual duration.
If this is not done at production time by system administrators
registering information about every failure at the moment the
failure occurs, it is almost impossible to get this information
postmortem. For this reason, in this paper we do not isolate
the impact of job execution on the failure pattern. Failure
identification is an important step in the analysis of a system
since both the prediction and the failure distribution analysis
rely on an accurate set of failure events.

B. Failure statistics

We analyzed all the failures and extracted their statistical
properties for each of the systems in Tables I and II. In this
study we consider the annotated failure information for the
LANL systems and the filtered set of failures for the Blue
Gene machine. For the LANL systems, the system adminis­
trators divided the failure types into six categories: facilities,
hardware, network, software, human, and unknown [29]. We
clustered the Blue GenelL events into similar categories in
order to have a unified view of all the systems. Table II shows
the percentage of each type of failure for each system. Human
error has no representation for the Blue GenelL system because
traces do not give context information about the failures and
so the actual root cause is unknown. Taking the analysis a step
further, we investigate in the next section how the prediction
results change when the analysis is done on different categories
of failures.

TABLE II. PERCENTAGE OF ERROR TYPES

LANL Blue GenelL
Facilities 2% Node cards 16%
Hardware 62% Midplane switch 4%
Human Error <1% Memory 22%
Network Error 2% Network 17%
Software 23% APP_IO 25%

IV. FAILURE PREDICTION

In the following subsections we present the methodology
used for preprocessing the log files in order to predict failures.
An overview of the methodology is presented in [10]. Our trace
analysis comprises two phases: the offline phase, where we
identify failures and construct the correlation chains between
non faulty events and failures and between failures themselves,
and the online phase, where the chains are used for prediction.
The offline phase uses the first three to five months for each
of the traces; and the rest time is used for online prediction.

A. Preprocessing

In the preprocessing step, we use the Hierarchical Event
Log Organizer (HELO [12]) on the raw logs, which generates
a list of message templates that represent frequently occurring
messages with similar syntactic patterns. These templates
represent regular expressions that describe different events in
a system. We consider each template as representing an event
type, and we analyze them separately by extracting a signal
for each of them and characterizing their behavior and the
correlations between them [10].

In general, filtering is used to reduce the size of the ana­
lyzed dataset without losing the log's characteristics. Contrary
to the general use, our filtering method, described in [10],
focuses on removing the normal behavior of the system in
order to highlight the outliers. This allows us to isolate events
related to failures and facilitates the extraction of event patterns
by the prediction modules.

B. Failure prediction

For the prediction phase we use two separate methods for
which we analyze their characteristics in the next sections. The
first method uses a statistical-based method and is used only
as a complement to the main prediction module. We describe
this technique and study how it influences the results in the
experiments section.

The main prediction method extracts correlations between
non fatal and fatal events by using signal analysis to character­
ize events and data-mining algorithms to find patterns between
them regardless of their behavior. The result of the offline
phase is chains of events that end with a failure that might
affect an application running on different nodes of a system.
The online phase monitors the incoming stream of events and
decides when to trigger a prediction. Also, modules in this
phase update the correlations and the characteristics of events

TABLE III. BGL: BREAKDOWN OF PREDICTION RESULTS

Failure Type Number Failures Number Events Recall
Node Cards 6 96 61%
Memory 251 8206 45%
Network 941 1055 15%
APP 10 1019 1723 62%
Midplane switches 52 166 41%

TABLE IV. LANL: BREAKDOWN OF PREDICTION RES ULTS

Facilities Hardware Human Error
Precision 89.2% 93.8% 80.8%
Recall 38% 45.1% 9.2%

Network Error Software Unknown
Precision 91.2% 93.7% 91.6%
Recall 42.8% 41.1% 23.4%

behavior to reflect the state of the entire system at different
moments. Details about this process can be found in [11].

For this paper, the output of the prediction method is a list
of predictions, each containing a timestamp and a system node.
The list contains both correct predictions and false positives.
Recall and precision values for all systems can be seen in
Tables I, III, and IV.

We divide the predicted events into different categories.
The results for system 20 from LANL are presented in
Table IV by following the same failure clustering as in the
previous section. For Blue GenelL we focused our attention on
the most frequent failure categories. The results are presented
in Table III. In general, there is a large difference of coverage
between different types of failures, which indicates that certain
failure types appear in patterns and correlations more than
do others. Depending on the resources an application might
use and hence which parts of the system are more stressed
and prone to failures, the overheads and benefits of preventive
checkpointing techniques might vary.

V. STATISTICAL MODELING

All the decision makers of the existing fault tolerance
strategies and mechanisms are based on the mathematical
stochastic models that describe the inter-failures arrival time
and the failures prediction alert times. Technically the decision
makers uses the inter-failures arrival time models as input to
manage the tradeoff between the overhead due to fault toler­
ance actions such as checkpointing, migration, or replication
versus the amount of lost work due to failures.

The objective of this section is to discover the mathematical
model that can be used to describe these two fundamentals
inputs. We focus mainly on the two stochastic processes.

The first is the classical stochastic model that describes
the inter-arrival time between failures. This model is used, for
instance, to compute the optimal interval between checkpoints
[5], [33], [2] or to schedule jobs in order to minimize comple­
tion time and maximize the reliability in same time [16].

The second stochastic process considered in this work
concerns the interval of time that separates two unpredicted
failures (two false negative alerts). To the best of our knowl­
edge this is the first work that model this stochastic process.

In fact recent proactive fault tolerance strategies [I], [21] com­
bine proactive fault tolerance action and preventive tolerance
actions to handle failures. In those works the distribution of
the false negative alerts is used as input to schedule preventive
checkpoints.

The most common approach for describing this kind of
stochastic process is to model the time between failures or
false negative alerts by a sequence of continuous and positive
random variables denoted by U1 , U2 ,···, Ui for failures and
Y1 , Y2 , •.. , Yi for false negative alerts. Ui or Yi is the interval
interval of time between the i-I and i failure or false negative
alert. Figure 1 shows an example of the relation between the
sequence Yi and the sequence Ui . Suppose now that failures I,
3, and 4 are correctly predicted, in this case the false negative
intervals are given by Y1 = U1 + U2 and Y2 = U3 + U4 + U5 .

Recall that Ui denotes the interval of time between failure i
and failure i - 1. Based on this model, we infer the probability

False negative alerts

YI ,I. Ya ~
U1 ~ I U3 f U4J U5 I

True positive alerts

,
t i71lr.

Fig. I . Failure and false negative intervals

distribution of U and Y from the empirical data. The data used
in this work reports failures of each node. Indeed, building
a stochastic model for each node is too expensive in terms
of computation and irrelevant for the existing fault tolerance
decision-makers. In fact one needs a model that describes the
failure arrival that concerns the entire cluster used to run the
application. In this work we consider the cluster as one unit.
Thus, formally, the failure time of a system is the first failure
that occurs on any system node. However, recall that this model
is valid only if the intervals of time between failures or false
negative alerts are independent and identically distributed. In
the next section we investigate whether the raw data validates
this hypothesis of true randomness.

A. Randomness testing

As a preliminary phase and before distribution fitting we
run several tests of randomness to identify whether the failures
extracted have a truly random behavior. The objective of this
phase is to decide whether the data set is from a random
process and does not exhibit any trends of periodicity, auto­
correlation, or non-stationarity. We note that it is statistically
irrelevant to fit probability distribution to nonrandom data,
since such data don't fill the basic assumption of all standard
statistical tests, namely is that the sample is obtained by a
random procedure. Also building a statistical model for this
nonrandom data is difficult given the change in terms of the
trend over time. In this section the objective is twofold.

1) We check the randomness hypothesis of failure inter­
vals and identify whether it is possible to fit the data
to classic probability distribution functions. Also, by
studying the randomness of the false negatives alerts,
we investigate the impact of the prediction process
on the randomness of the data.

2) We investigate the relationship between the random­
ness of the failure intervals and the efficiency of

the failure prediction mechanism. This will determine
whether a dataset with a non truly random behavior
has a better recall than does a a truly random dataset.

J) Methodology: In the literature, randomness tests are
classified into two categories. The first category, called para­
metric tests, is often used when we have information about the
distribution of the data. Since we don't have any assumption
about the distribution we need randomness tests from the non­
parametric tests category. This category contains three well­
known non-parametric tests. First we have the runs test, also
called the Wald and Wolfowitz test [32], where each interval of
time is compared to the mean. This test verifies that intervals
are mutually independent. The second test called run up/down
[3] is also similar to the runs test, it is designed to capture
the trend of the data set by comparing each interval to the
previous one. The third test is an autocorrelation test [19], and
it is used to discover repeated patterns that differ only by a lag
in time. We note that when the autocorrelation is used to detect
nonrandomness, usually only the first lag autocorrelation is of
interest.

As there is no perfect method to judge randomness, we
run the three tests over all the data. The runs test and the
up/down test return one value, called a probability value,
denoted by a p-value. This value is used to either reject the
null hypothesis about the randomness of the data if the p­
value is smaller than or equal to the significant threshold, or
confirm that the data is truly random if the p-value is greater
than the significant threshold. As pointed in [3] and [32], for
the first and second tests a p-value of 5% is a strong evidence
to reject the null hypothesis about the randomness of data. For
the autocorrelation we consider a confidence interval of 95%.
Thus, if the value of the autocorrelation test is out of this
confidence interval, the sample contains a high correlation of
order 1, which implies the nonrandomness of the data.

2) Randomness test results: Table V reports the p-values
for the runs test and the up/down test concerning both real
failures and false negative alerts. We note that all the statistical
tests are based on the normal distribution assumptions. Thus,
we have to make sure that the input samples are enough.
According to Casella and Berge [4] a sample should contain
more than 30 entries. Therefore, both system 22 and system
24 are excluded from the study since they contain respectively
17 and 23 failures.

Highlighted cells represent the case where the data fail to
pass the randomness test. This first result shows that more
than the half of the failure traces data concerning the failures
intervals fail to pass the test of randomness. This implies that
fitting classical probability distribution to this data is irrelevant,
since the sequence of interval is not random. Hence all the
existing works that use a failure distribution to make decisions
about checkpointing or scheduling jobs cannot be used in this
case.

Most of the traces concerning the interval of time sepa­
rating the unpredicted failures pass both runs and up/down
tests except for four cluster. Thus, the failures with nonrandom
pattern are predicted and removed from the traces. Intuitively,
this means that the failure prediction mechanism catches
most of the failures with nonrandom occurrences. Thanks to

TABLE V. RANDOMNESS TESTS P-VALUES

SYSICIll amc :~l1 lu l\'..": F.d.lU:: n~ \ !t.:.-

~ tiCS UI\:\ I tlll)\,"V fI U!I' II .llIeS uns c~ 1 l<lw. <51
Hluc (jcncn~ 235 [L 1.17 12~ 11.7\1 U 97
LANL Sys 2 1951 J)11l 0.17 1172 0.01 086
LANL Sys 3 294 Oil!! 073 158 11.36 0.92
LANI. Sy, 4 298 075 0.42 163 0. 15 0.83
LANI. Sys 5 3114 0.51 095 1.\8 0.83 059
LANI. Sys 6 63 100 0.88 32 0.69 1.00
LANI. Sys 8 436 030 Il.Ol 270 0.69 U.48
I.ANI. Sys 9 279 0.01 11.23 172 0.01 0. 10

LANI. Sy, 10 234 0.22 072 122 11.\1'1 U.13
LAN I. Sy, II 266 .m 0.56 154 0,11 063
LAN I. Sy, 12 255 1101 0.19 154 I Q.Ol
LANL Sy, 13 194 O. 0.74 123 0.8U II.S']
LAN I. Sy, 14 120 111101 U.36 75 0.49 0.17
LANL Sys 15 53 n.1I1 087 32 0.50 0.51
LANL Sy, 16 245 0.1)1 0.98 159 0.62 0.97
LANL Sy, 18 3917 0.111 lI.JIf 2195 0.66 0.74
LANL Sy, 19 3235 I).(l, U.54 1785 008 0.86
LANL Sy, 20 2400 ItOI 0. 14 1310 ",,_!l.'l.!._ 0.85
I.ANL Sy, 21 105 fl.m 76 0.39 0.96
LANL Sy, 22 17 1 ,
LANL Sy, 23 226 12'; 0.15 U.55
LANL Sv.~ 24 23 lill<$

failure prediction we can use statistical fitting techniques to
mathematically model the false negative alerts.
To investigate this intuitive result further and to study the
impact of the nonrandom ness on the prediction process, we
show in Figure 2 the autocorrelation values using the first
lag. Horizontal lines in Figure 2 represent the 95% confidence
interval. The autocorrelation test reveals also that most of the
data concerning the failures intervals exceed the confidence
interval. This result confirms that failure traces are not truly
random and show a high correlation. This also confirms pre­
vious studies [14], [28] that report a high correlation between
failures. As with the for runs and up/down tests, after using the
failures prediction, the false negative traces are truly random
except for few a systems.

Figure 2 shows that systems 9, 10, 11, 12, 13, 14, and 15
present a high correlation. This can be explained by the fact
that those clusters have the same hardware type, denoted by
the type F in [28]. Among this set of systems the correlation
is different because the in system size. One would expect that
the bigger the size, the higher the correlation; but this is not
true. In fact the smallest clusters 9, 10, and 12 have the highest
correlation.

Bars in Figure 4 represent the recall ratio for the different
computing systems. This figure points out another important
finding. The recall ratio is related to the amount of correlations
that the traces contain. For instance, for system 21 which
has a smaller recall, Figure 2 indicates that it also has the
smallest amount of correlation. We have the same observation
for system 10; again the recall is high, and it has the highest
amount of correlation. Figure 4 shows that we can still get
high recall even if the trace does not contain a high correlation
of order 1, for example, system 6 has the highest recall and
a small correlation value. Considering that a trace is random
only if it passes the three tests, only 6 of 20 computing systems
with a truly random failure sequence can be used to infer
statistical models to describe mathematically the arrival time of
failures. We note that for the systems without true randomness,
no failure distribution could be estimated. Thus, one cannot
use fault tolerance strategies such as those in [5], [33], [1],
[21] to compute the optimal interval between checkpoints. One
solution could be to change the scale and consider failures
on the node level, in order to insulate the nodes with high

correlation. Also, failures with truly random behavior lead
to false negative samples that are truly randomly distributed.
The important finding is that, thanks to the failure prediction
mechanism that catches the failures with periodic patterns and
correlation, we can infer statistical models that describe the
inter-arrival time between false negative alerts for IS of 20
computing systems.

0.3
.Overlapped predictions

• Unique predictions

Fig. 3. Recall for the statistical-based prediction method

"

••

Fig. 4. Recall ratio for various systems

The lack of correlation between Figures 2 and 4 influenced
us to implement a statistical-based prediction method, similar
to the one from [6] that uses the failure distribution for each of
the analyzed systems. statistical-based methods emphasize dis­
covering probabilistic characteristics among failure events and
then using the obtained characteristics for failure prediction.
Our method basically involves two phases. In the offline phase
it obtains and verifies statistical characteristics of failures, for
example temporal correlations from the training data, and in
the online phase it produces a warning if statistical patterns
are observed.

The results are closely related to the amount of correlation
between inter-arrival time of failures in the LANL traces. Fig­
ure 3 presents how statistical-based methods can complement
our correlation-based prediction and indicates the impact on
the recall value for the LANL systems.

Clearly, system 9 presents a strong correlation between
failures, and as a consequence the prediction technique of­
fers high recall values. In some cases, systems that do not
have a strong correlation are misinterpreted by the prediction
technique and thus create a large number of false positives,
decreasing the overall precision. This is the case of system 8,
where the statistical-based method discovers several weak false

correlations that are later used for false predictions. To avoid
this problem, we decided to keep only very strong predictions
and filter the rest. Figure 3 presents only the systems that
have strong cOlTelations, and as a result the gain in recall
outperforms the loss in precision.

On closer examination, we observed that the failure pre­
dicted by the statistical-based prediction method overlaps with
some of our original predictions. Moreover, the introduction
of the new predictor does not change the shape of the recall
from Figure 4 and the improvement in recall does not exceed
15%. This observation led us to an important conclusion,
specifically that the statistical-based prediction technique is
not universal and provides different results depending on the
system. Techniques like the one in [6] can be used only for
systems with high correlations for the failure inter-arrival time,
and their results are specific to the system they analyze.

B. Distribution fitting

The principle behind fitting distributions to data is to find
the type of distribution (normal, lognormal, gamma, beta, etc)
and the value of the parameters (mean, variance, etc) that give
the highest probability of producing the observed data. The
objective here is to infer a mathematical model that can be
used to describe formally the inter-arrival time between failures
and false negative alerts. We then investigate the relationship
between the failures distribution without prediction and the
probability distribution of the false negative alerts. Only traces
with truly random behaviors are relevant to be used to find
a good probability distribution that is a good match to the
empirical distribution.

1) Fitting methodology: Different methods are available to
fit the empirical data to probability distribution functions. The
most common methodology is: first select a set of candidate
distributions then estimate the values of distribution parameters
based on the empirical distribution. The best fit with the most
likely similarity is kept. Many distributions could be used as in­
put candidate in step I. In this work we conduct the distribution
fitting process using the commonly used distribution functions
to model failures in HPC systems [15], [14], [28], namely,
exponential, Weibull, log-normal, normal, and gamma. In the
second step we compute the best parameter values for each
candidate distribution. Specifically, in step 2 we look for the
maximum likelihood estimates (MLE) [23] that are the most
likely fit to the empirical data. We choose this method rather
than using the moment matching method since this method is
sensitive to outliers [8]. Technically, MLE aims to maximize
the logarithm of the likelihood function that corresponds to
the closet distance between the empirical distribution and
samples resulting from distribution with certain parameters.
We use the negative log likelihood value produced by the
MLE to rank the different distributions. This still does not
mean that this distribution is a good model for the empirical
data. Thus we check also the goodness of fit between the data
sample and synthetic sample. The literature describes dozens
of goodness-of-fit tests, but only a handful are used in practice.
We use the Kolmogorov-Smirnov [24] test and the standard
probability-probability plot (PP-plot) as a visual method. The
Kolmogorov-Smirnov test checks that the sample comes from
the best-fitted distribution against the alternative that it does

o~r---r---r---'---.---~--.----r---r---.---r---.---.--~---'----r---r."~M~'00~D=ffD=W=W~nF~~~lurn=5====~
AuloeoTrototlOI1 Faile n9QlJllve

0 4

0.2

--'- .. . - .-" . ~ .. - .. ',' ••. I.! .. "'·· .. ·" .. -·,,··,, ·· .. ·,,~

- 0.2

Fig. 2. First lag autocorrelation coefficients

not come from the late distribution. Also the test rejects the
true randomness hypothesis at the 5% significance level.

2) Fitting results: We first investigate the statistical model
for clusters with a true random behavior for both failures
and false negative alerts . Then we consider traces that fail
to pass the randomness test for failures intervals and pass the
randomness test for false negative intervals. We use the second
time scale to estimate the failure distribution parameter. Table
VI reports the fitting results concerning the first set of data
where both intervals are truly random. As we can see, not all
the probability distributions are present, but exponential and
Weibull are the closet fit to the available data.

We note that the parameter J.L is the mean in seconds
for the exponential distribution. For the Wei bull parameter a
denotes the scale and b the shape parameter. The exponential
distribution is a good fit for the data with a coefficient of
variation (CV) [20] close to I. This is an expected result since
the CV of the exponential distribution is equal to 1, hence
if the sample is taken from exponential random variables, its
CV should be close to 1 as well. For the data with a high
variation, Wei bull is the best fit. We notice also that systems
have either a constant failure rate for the exponential case or a
strictly decreasing failure rate, since all the shape parameters
are lower than 1 for the Wei bull case.

The second outcome from this study is the relationship
between the initial failure distribution and the false negative
distribution function. As can been seen in Table VI the best­
fitted distribution for the data concerning the false negative
alerts is the same distribution for the failure intervals with dif­
ferent parameters. Hence, intuitively we can say that the failure
prediction process does not change the initial distribution and
affects only the scale parameters of the initial distribution. Also
as reported in Table VII, for the case where the distribution is
exponential, the ratio between the initial parameter J.Lu and the
false negative parameter J.Ly is given by J.Lyl J.Lu ~ 1 - r, where

, '1 FI1IIur81i. 95~cc l1l1danco Itl.tol"t'lll
- F"1ll5e " ~ INa!lSV. eOf'llidel1a:t (niGNal

--to -

r = 0.45 is the recall. As with Wei bull, we have approximately
the same shape parameter for both distributions (bu = by),
and the scale parameters verify aulay ~ 1 - r . This means
that the failure prediction mechanism acts as a scaling filter
affecting only the time scale. Therefore we can avoid the fitting
process and estimate the distribution of the false negative alerts
using the recall and the initial failure distribution. We note that
the failure prediction process does not have an impact on the
variability of the data. As we can see in Table VI the coefficient
of variation (CV) is almost the same for both data.

The Kolmogorov-Smirnov test values (denoted by KS) in
Table VI indicate that all the fitting successfully passes the
test of goodness. To assess the fitting results by a visual
method, we report in Figures 5(a) and 5(b) the PP-plots.
Clusters are grouped based on the scale and the kind of failure
distribution. Figure 5(a) reports the PP-plot for the exponential
type distributions . As can be seen the PP-plot confirms that the
exponential distribution presents a good visual filting. We have
the same observation in Figure 5(b) reporting the PP-plot for
Wei bull-type distribution.

Figure 5(a) and Table VI show that systems 3, 4, and 5
have almost the same failure distribution and the same recall,
which leads to the same false negative distribution as well.
We note that systems 3, 4, and 5 have exactly the same
architecture; more precisely, they have the same processor
type and number [22]. Moreover, Schroeder and Gibsion [28]
report that more than 50% of the failures experienced by
this set are CPU-related failures due to a design flaw. This
implies that the failures observed on those three different
systems are independent from the workload profiles or the
applications executed on these clusters. Cluster number 6 is
also from the same family, but it has only 32 nodes whereas
the clusters in the other set are composed of 128 nodes.
We observe that the ratio between the two failure rates is
approximately 4.6, which corresponds to the ratio between
node numbers. This observation confirms that the failure rate

TABLE VI. STATISTICAL OF FITTING ALL RANDOM PROCESS (FITTING PARAMETERS SCALE ARE IN SECONDS)

System N~me F~ilurcs False Negative ~ ~ 1- r

Me~n CV Best Fit KS Mean CV Best Ht KS 4 = l -r a,

Blue Gene/L 1040.5 0.92 ex ponential /1-" - 6243 1. 3 0.10 1888.1 1.10 exponential /1-y - 113289 0.79 0.55
LAN L Sys 3 3595.1 1.1 exponential /1-u - 215705 0.98 6559.0 1.1 cx ponentinl 11 y - 393538 U.70 0.54
LANL Sys 4 3409.1 J.l exponen tial /1-u - 204544 0.77 6187.0 J.J exponelili nJ J.I. - 371 218 0.99 0.54
LANL Sys 5 3294.5 1.1 exponential /1-u - 197671 0.95 6377.9 1.2 exponential J1. y - 382671 0.35 0.51
LANL Sys 6 16796.7 0.9 exponential /1-u - 1007800 0.81 31878.2 1.1 exponential /1- y - 19 I 2690 0. 99 0.54

LANL Sys 23 9288.2 I.3 Wefbull au = 509380 bu - 0.846905 0.97 16272.3 1.2 Weibull a y - 895274 by = 0.851258 0.98 0.56

(a) PP-plot systems: BlueG/L, 3, 4, 5 and 6 (b) PP-plot system 23

Fig. 5. PP-plot and CDF for exponential type distribution (a) and Weibull-type distribution (b).

is linearly proportional to the size of the system when the
hardware is the same.

Table VII reports the fitting results for the set of systems
with nonrandom failures and random false negative alerts.
As can be seen, the set of best fit distributions is different.
Contrary to the previous case, here the exponential distribution,
the Wei bull distribution, and the lognormal are the best can­
didates to model the inter-arrival time of false negative alerts.
To double check the fitting results, we report the PP-plot in
Figures 6 and 7 for the different systems.

TABLE VII. STATISTICAL FITTING FOR RANDOM FALSE NEGATIVE

System Name poise Negnt i.c
~ean (min) cv tlest I'it KS

LANL Sys 8 7859.6 1.4 Weiblill a - 401499 b - 0.767798 0.74
LANL Sys 10 8247.0 3.6 WeibuTI a - 318087 b - 0.647838 0.29
LANL Sys II 6353.5 3.0 Wei bull a - 232647 b - 0.609348 0.61
LANL Sys 13 8164.3 3.9 lognormal /1- = II .5257 0' - 1.87004 0.14
LANL Sys 14 I I 35 1.U 2.5 Weibull a - 391931 b - 0.559039 0.77
LANLSys 15 12136.7 1.2 exponential /l. - 728203 0.17
LANL Sys 16 3430.6 1.3 Wei bull a - 182624 b - 0.810939 0.69
LANL Sys 18 8 18.6 1.5 lognormal /l. - 10.11 230' - 1.2~677 0.37
LANL Sys 19 863.6 1.4 exponential /l. - 51 816.8 0.18
LANL Sys 21 1986.9 2.3 lognormal /1- = 10.6382 0' - 1.46402 0.85

One question that may be raised is whether one can model
failure arrival times of the entire LANL computing system as
one unit. The answer is no, since some samples in the data
comes from process that are not non truly random and the
only way to analyze the failure sets is to break the system into
smaller units. This result shows the benefit of understanding
temporal correlations and shows how one can exploit them
for failure prediction. Moreover, it provides a new opportunity
to design smart fault tolerance strategies and enhance the
conventional ones.

VI. USE CASE

Many use cases can be developed to show the impact of
such models. In this paper we present a case where checkpoint
and migration are coupled in order to reduce the overall wasted
time. The proposed fault tolerance strategy is to use migration
as a proactive action when a prediction alert is available. Ar­
guably proactive migration alone cannot systematically avoid
re-executing the application from scratch if failures are not
perfectly predicted. Therefore, failure prediction and proactive
migration should be combined with periodic checkpointing.
However, coupling failure prediction with proactive migration
and periodic checkpointing is not trivial. In order to provide
significant benefits, proactive and preventive actions schedul­
ing strategies should be chosen carefully. Basically, we have to
compute the optimal interval between periodic checkpoints and
to decide online whether it is worthwhile to perform proactive
migration in light of the failure prediction information.

A. Preventive checkpoint interval

The preventive action is to perform periodic checkpointing
of the current application state. This action is perfonned in
a constant amount of time, c. We introduce r to represent
the units of useful work between two consecutive preventive
checkpoints. In this work we consider that a unit of work
con'esponds to a unit of time as well. We use the classical
Young's formula r = ..j2Cj.L, where J.L is the mean time between
unpredicted failures.

B. Proactive migration

The proactive action is considered efficient if and only
if the alert is a true positive alert. In order to handle false
positive alerts and to minimize the wasted time due to them,
the decision to perform or not the proactive action is taken

.... 1.1 .. __ ._.0...0.1.

1 ..

(a) PP-plot systems 15 and 19 (b) PP-plot ~ystems 10 and 14

Fig. 6. PP-plot and CDF for exponential-type distribution (a) and Weibull-type distribution (b).

(a) PP-plot systems 13, 18 and 21 (b) PP-plot systems 8, II and 16

Fig. 7. PP-plot and CDF for lognormal type distribution (a) and Weibull-type distribution (b).

online according to the progress of the application since
the last checkpoint and the precision of the alert versus the
migration cost Let ta denote the elapsed time since the last
checkpoint; p is the precision of the prediction mechanism,
and m is migration cost. As shown in [1], the proactive action
is performed if the inequality pm/p ::; ta holds; otherwise it
will be ignored.

C. results

We present in this section the overall improvement thanks
to the proposed combination. We investigate using an event­
based simulator the percentage of useful work that an ap­
plication can reach in presence of failures. To this end we
use the traces of failures, false negative and true positive of
the system 19 at LANL. We reply an execution considering
several configurations of checkpoint cost between 10 and 40
minutes. Migration is considered as constant cost at 1 minute.
As indicated in Table VII the false negative distribution is
exponential. Bars in Figure 8 show the overall percentage of
useful work that an application can reach. we compare the
proposed combination versus a classical execution using the
Daly [5] optimal interval with proactive migration. In order
to compute the optimal interval for Daly model we use the
mean time between failures in the traces. This figure shows
that the application efficiency is improved by more than 5%
with a recall of 45%. This confirms the expected theoretical
improvement shown in our previous work [1].

100%

95%

90%

85%

80%

• Optimal combinatio~
• Daly

10 20 30 40

Fig. 8. Overall system useful time

VII. CONCLUSION

A major challenge facing parallel applications on large
scale HPC systems is failures. The situation is predicted to
be even worst for exascale platforms. For this reason, under­
standing the temporal correlations of failures and exploiting
them for smart checkpointing and scheduling decisions are
critical tasks. Our study highlights that most of the available
failure traces are not random and hence are suitable for use
as empirical data for probability fitting. This result suggests
that developers of failure analysis algorithms should focus on
understanding the temporal correlations of failures. Moreover,
we point out that the failure prediction mechanism is a good
tool to identify and remove the nonrandomness and correlation.
Another important, unexpected, result concerns the impact of
the relation between the initial failure distribution and the false
negative distribution. In this work we show that the failure
prediction mechanism acts as a scale function and affects

only the scale parameter. Hence, when the initial distribution
is available, based on it, we estimate the distribution of the
false negative alerts, which avoids the overhead of the fitting
process. We also show that the peak of correlation on the
initial traces has an important impact on the prediction results,
specifically on the recall value. This influences the design of
some adaptive fault tolerance strategies. For example, a simple
scheduling policy could be to stop scheduling large parallel
jobs during failure peaks. Moreover, one can devise adaptive
fault-tolerance mechanisms that adjust the policies based on
the information related to peaks. For example, an adaptive
fault-tolerance mechanism can migrate the computation at the
beginning of a predicted peak. We plan to analyze more deeply
the set of systems with a high correlation like system 2 or 20,
and isolate sources of nonrandomness. Doing so can lead to
higher precision in terms of prediction. Another direction of
future research is to investigate whether a cross-correlation
of different time scales has an impact on the prediction
mechanism.

ACKNOWLEDGMENTS

This work was supported by the Advanced Scientific Com­
puting Research Program, Office of Science, U.S. Department
of Energy, under Contract DE-AC02-06CHl1357.

REFERENCES

[I) Mohamed Slim Bouguerra, Ana Gainaru, Franck Cappello,
Leonardo Bautista Gomez, Naoya Maruyama, and Satoshi Matsuoka.
Improving the computing efficiency of hpc systems using a combination
of proactive and preventive checkpointing. In Proceedings of IEEE
IPDPS 2013. IEEE press, 2013.

[2) Mohamed Slim Bouguerra, Den-jck Kondo, and Denis Trystram. On
the scheduling of checkpoints in Desktop grids. In Proceedings of the
11th IEEElACM International Symposium on Cluster, Cloud, and Grid
Computing (CCGrid 2011), CCGRID 'll, pages 305-313, NewPort
Beach, CA, USA, May 2011. IEEE Computer Society.

[3) J.Y. Bradley. Distribution-free statistical tests. Prentice-HaB Englewood
Cliffs, NJ, 1968.

[4) George Casella and Roger L Berger. Statistical inference. Duxbury
Press, 2001.

[5) J. T. Daly. A higher order estimate of the optimum checkpoint interval
for restart dumps. Future Generation Computer Systems, 22(3):303-
312,2006.

[6) J. Gu et al. Dynamic meta-learning for failure prediction in large­
scale systems: A case study. In International Conference on Parallel
Processing, pages 157-164. IEEE press, 2008.

[7) N. Nakka et al. Predicting node failure in high performance computing
systems from failure and usage logs . In IEEE Work.shop on Dependable
Parallel, Distributed and Network-Centric Systems. IEEE press, 2011.

[8) Dror G Feitelson. Workload modeling for performance evaluation. In
Peiformance Evaluation of Complex Systems: Techniques and Tools,
Pelformance 2002, Tutorial Lecrures, pages 114--141. Springer-Verlag,
2002.

[9) Xiaoyu Fu, Rui Ren, Jianfeng Zhan, Wei Zhou, Zhen Jia, and Gang
Lu. Logmaster: Mining event correlations in logs of large-scale cluster
systems. In Reliable Distributed Systems (SRDS), 2012 IEEE 31st
Symposium on, pages 71-80, Oct.

[10) Ana Gainaru, Franck Cappello, and William Kramer. Taming of the
shrew: Modeling the normal and faulty behavior of large-scale hpc
systems. In Proceedings of IEEE 1PDPS 2012. IEEE press, 2012.

[II) Ana Gainaru, Franck Cappello, Marc Snir, and William Kramer. Fault
prediction under the microscope: A closer look into hpc systems. In
Proceedings of 2012 International Conference for High Pelformance
Computing, Networking, Storage and Analysis. IEEE press, 2012.

(12) Ana Gainaru, Franck Cappello, Stefan Trausan-Matu, and Bill Kramer.
Event log mining tool for large scale hpc systems. In Proceedings of
the 17th international conference on Parallel processing - Volume Part
1, Euro-Par' II, pages 52-64, Berlin, Heidelberg, 20\ I. Springer-Verlag.

[13)

[14)

[IS)

[16)

T. Hacker, F. Romero, and C. Carothers. An analysis of clustered
failures on large supercomputing systems. lournal of Parallel and
Distributed Computing, 69:652- 665, 2009.

E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and F. CappeBo.
Modeling and tolerating heterogeneous failures in large parallel systems.
In Proceedings of 201 J International Conference for High Pelformance
Computing, Networking, Storage and Analysis, page 45. ACM, 20 II.

B. Javadi, D. Kondo, JM. Vincent, and D.P. Anderson. Discovering sta­
tistical models of availability in large distributed systems: An empirical
study of seti@home. 1EEE Transactions on Parallel and Distribwed
Systems, 22(11):1896 -1903,2010.

E. Jeannot, E. Saule, and D. Trystram. Optimizing performance and
reliability on heterogeneous parallel systems: Approximation algorithms
and heuristics. lournal of Parallel and Distributed Computing, 2012.

(17) W. Jiang and T. et al Zhou. Understanding customer problem trou­
bleshooting from storage system logs. 7th USENIX Conference on File
and Storage Technologies, 2009.

[18) W. Jones, J. Daly, and N. DeBardeleben. Impact of suboptimal
checkpoint intervals on application efficiency in computational clusters.
HPDC, 2010.

[19) 1.D. Knoke. Testing for randomness against autocorrelation: Alternative
tests. Biometrika, 64(3):523-529, 1977.

[20) Lambert H Koopmans, Donald B Owen, and 11 Rosenblatt. Confidence
intervals for the coefficient of variation for the normal and log normal
distributions. Biometrika, 51 (112):25-32, 1964.

[21) Zhiling Lan and Yawei Li. Adaptive fault management of parallel
applications for high-performance computing. Computers, IEEE Trans­
actions on, 57(12):1647-1660, 2008.

[22) LANL. Failures traces. http://institutes.1an1.gov/datalfdatal, 2008.

[23) Erich Leo Lehmann and George Casella. Theory of point estimation,
volume 31. Springer, 1998.

[24) Jr. Massey and J. Frank. The kolmogorov-smirnov test for goodness
of fit. Journal of the American statistical Association, 46(253) :68-78,
1951.

[25) Raghunath Rajachandrasekar, Xavier Besseron, and Dhabaleswar K
Panda. Monitoring and predicting hardware failures in hpc clusters with
ftb-ipmi. In Parallel and Distribllled Processing Symposium Workshops
& PhD Forum (IPDPSW), 2012 IEEE 26th International, pages 1136-
1143. IEEE, 2012.

[26) R. Sahoo, A. Sivasubramanium, M. Squillante, and Y. Zhang. Failure
data analysis of a large-scale heterogeneous server environment. DSN,
2004.

[27)

[28)

[29)

[30)

[31)

[32)

[33)

[34)

Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online
failure prediction methods . ACM Computing Surveys, 42:1--42, 2010.

B. Schroeder and G.A. Gibson. A large-scale study of failures in high­
performance computing systems. IEEE Transactions on Dependable
and Secllre Computing, 7(4):337-351, 2006.

Bianca Schroeder and Garth A. Gibson. A large-scale study of failures
in high-performance computing systems. In DSN '06: Proceedings of
the International Conference on Dependable Systems and Networks,
pages 249-258, Washington, DC, USA, 2006. IEEE Computer Society.

J. Stearley, R. Ballance, and L. Bauman. A State-Machine Approach to
Disambiguating Supercomputer Event Logs. MAD, 2:155-192, 2012.

Narate Taerat, Nichamon Naksinehaboon, Clayton Chandler, James
Elliott, Chokchai Leangsuksun, George Ostrouchov, Stephen L Scott,
and Christian Engelmann. Blue gene/llog analysis and time to interrupt
estimation. In Availability, Reliability and Security, 2009. ARES '09.
International Conference on, pages 173-180. IEEE, 2009.

A. Wald and J. Wolfowitz. On a test whether two samples are from the
same popUlation. The Annals of Mathematical Statistics, pages 147-
162, 1940.

J. W. Young. A first order approximation to the optimum checkpoint
interval. Commlill . ACM, 17(9):530-531 , 1974.

Z. Zheng and L. et al Yu. Co-analysis of ras log and job log on
blue geneJp. Proceedings of the 20J 1 IEEE 1nternational Parallel and
Distributed Processing Symposium, pages 840-851, 2011.

jbullock
Typewritten Text
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

